Abstract

Starting from common monounsaturated fatty acids, a strategy is revealed that provides ultra-long aliphatic α,ω-difunctional building blocks by a sequence of two scalable catalytic steps that virtually double the chain length of the starting materials. The central double bond of the α,ω-dicarboxylic fatty acid self-metathesis products is shifted selectively to the statistically much-disfavored α,β-position in a catalytic dynamic isomerizing crystallization approach. "Chain doubling" by a subsequent catalytic olefin metathesis step, which overcomes the low reactivity of this substrates by using waste internal olefins as recyclable co-reagents, yields ultra-long-chain α,ω-difunctional building blocks of a precise chain length, as demonstrated up to a C48 chain. The unique nature of these structures is reflected by unrivaled melting points (Tm =120 °C) of aliphatic polyesters generated from these telechelic monomers, and by their self-assembly to polyethylene-like single crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.