Abstract
Throughout Sandia`s history, products have been represented by drawings. Solid modeling systems have recently replaced drawings as the preferred means for representing product geometry. These systems are used for product visualization, engineering analysis and manufacturing planning. Unfortunately, solid modeling technology is inadequate for life cycle systems engineering, which requires maintenance of technical history, efficient management of geometric and non-geometric data, and explicit representation of engineering and manufacturing characteristics. Such information is not part of the mathematical foundation of solid modeling. The current state-of-the-art in life cycle engineering is comprised of painstakingly created special purpose tools, which often are incompatible. New research on {open_quotes}chain modeling{close_quotes} provides a method of chaining the functionality of a part to the geometric representation. Chain modeling extends classical solid modeling to include physical, manufacturing, and procedural information required for life cycle engineering. In addition, chain modeling promises to provide the missing theoretical basis for Sandia`s parent/child product realization paradigm. In chain modeling, artifacts and systems are characterized in terms of their combinatorial properties: cell complexes, chains, and their operators. This approach is firmly rooted in algebraic topology and is a natural extension of current technology. The potential benefits of this approach include explicit hierarchical and combinatorial representation of physics, geometry, functionality, test, and legacy data in a common computational framework that supports a rational decision process and partial design automation. Chain modeling will have a significant impact on design preservation, system identification, parameterization, system reliability, and design simplification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.