Abstract
We study spherical completeness of ball spaces and its stability under expansions. We introduce the notion of an ultra-diameter, mimicking diameters in ultrametric spaces. We prove some positive results on preservation of spherical completeness involving ultra-diameters with values in narrow partially ordered sets. Finally, we show that in general, chain intersection closures of ultrametric spaces with partially ordered value sets do not preserve spherical completeness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.