Abstract

We present the current fastest deterministic algorithm for k-SAT, improving the upper bound (2-2/k)^{n + o(n)} due to Moser and Scheder in STOC 2011. The algorithm combines a branching algorithm with the derandomized local search, whose analysis relies on a special sequence of clauses called chain, and a generalization of covering code based on linear programming. We also provide a more intelligent branching algorithm for 3-SAT to establish the upper bound 1.32793^n, improved from 1.3303^n.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.