Abstract
We have investigated the linear viscoelastic properties of high molecular weight hyaluronan in aqueous solution using an experimental approach combining mechanical rheometry and optical microrheology. The complex shear modulus has been measured over a broad frequency range from 10(-1) to 10(7) rad/s. Chain flexibility is characterized by the persistence length lpand this parameter has been determined for the first time in the entangled regime here from high frequency modulus data. At NaHA concentrations above the entanglement concentration ce, lp is essentially independent of polymer concentration, temperature, and ionic strength. The latter is consistent with the Odijk-Skolnick-Fixman theory. The scaling exponent describing the concentration dependence of the plateau modulus G0 agrees well with predictions for polymers in good solvents. The scaling exponents for the specific viscosity ηsp and relaxation time TR are slightly higher than theoretically predicted for polyelectrolytes in the high salt limit, indicating, that molecular aggregation occurs at higher polymer concentrations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.