Abstract
The purpose of this clinical study was to identify dielectric markers to complete a previous thermal and vibrational study on the molecular and organizational changes in human dermis during intrinsic and extrinsic aging. Sun-exposed and non-exposed skin biopsies were collected from 28 women devised in two groups (20-30 and ≥60years old). The dielectric relaxation modes associated with localized and delocalized dynamics in the fresh and dehydrated state were determined by the Thermostimulated currents technique (TSC). Intrinsic and extrinsic aging induced significant evolution of some of the dielectric parameters of localized and delocalized dynamics of human skin. With photo-aging, freezable water forms a segregated phase in dermis and its dynamics is close to free water, what evidences the major role of extrinsic aging on water organization in human skin. Moreover, TSC indicators highlight the restriction of localized mobility with intrinsic aging due to glycation, and the cumulative effect of chronological aging and photo-exposition on the molecular mobility of the main structural proteins of the dermis at the mesoscopic scale. TSC is a well-suited technique to scan the molecular mobility of human skin. It can be uses as a relevant complement of vibrational and thermal characterization to follow human skin modifications with intrinsic and extrinsic aging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.