Abstract

Optoelectronic devices based on conjugated polymers often rely on multilayer device architectures, as it is difficult to design all the different functional requirements, in particular the need for efficient luminescence and fast carrier transport, into a single polymer. Here we study the photophysics of a recently discovered class of conjugated polymers with high charge carrier mobility and low degree of energetic disorder and investigate whether it is possible in this system to achieve by molecular design a high photoluminescence quantum yield without sacrificing carrier mobility. Tracing exciton dynamics over femtosecond to microsecond time scales, we show that nearly all nonradiative exciton recombination arises from interactions between chromophores on different chains. We evaluate the temperature dependence and role of electron-phonon coupling leading to fast internal conversion in systems with strong interchain coupling and the extent to which this can be turned off by varying side chain substitution. By sterically decreasing interchain interaction, we present an effective approach to increase the fluorescence quantum yield of low-energy gap polymers. We present a red-NIR-emitting amorphous polymer with the highest reported film luminescence quantum efficiency of 18% whose mobility concurrently exceeds that of amorphous-Si. This is a key result toward the development of single-layer optoelectronic devices that require both properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.