Abstract

The chain conformation of a heteropolysaccharide Erwinia gum (EG) consisting of Glc, Gal, Fuc, and GlcA in aqueous solution was investigated by using viscometry and static and dynamic light scattering. The Huggins constants k′ ranging from 0.31 to 0.35, and the larger second virial coefficient A 2 of the order of 10 −4 and even 10 −3 mol g −2 cm 3 for EG fractions having different molecular weights in 0.03 M NaCl aqueous solution at 25 °C, suggested that 0.03 M NaCl aqueous solution is a good solvent for EG polysaccharide. Smidsrød’s ‘ B-value’ characterizing chain stiffness was estimated to be 0.028–0.045 for EG fractions indicating that the backbone of EG polysaccharide is semi-stiff having similar stiffness to the semi-stiff Alginate and CMC. The hydrodynamic factor ρ (1.69–1.89), Flory-Fox factor Φ, and the product of ρΦ/ N A (0.16–0.22) also confirmed the semi-stiffness of EG polysaccharide chains. Compared with general flexible polymers, the first remarkable shear-thinning and then Newtonian flowing behaviors in steady shear tests for EG polysaccharides were ascribed to the alignment of extended semi-stiff chains on shearing. The dynamic oscillatory shear experiments indicated that addition of certain amount of NaCl effectively prohibited its gelation in pure water even at high concentration and low temperature for long time, suggesting that 0.03 M NaCl aqueous solution of EG has good stability and ability of antigelation, and thus is a promising additive in food field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call