Abstract
Composite nanofibers of poly(ethylene terephthalate), PET, with multiwalled carbon nanotubes (PET/MWCNT) were prepared by the electrospinning method. Confinement, chain conformation, and crystallization of PET electrospun (ES) fibers were analyzed as a function of the weight fraction of MWCNTs. For the first time, we have characterized the rigid amorphous fraction (RAF) in polymer electrospun fibers, with and without MWCNTs. The addition of MWCNTs causes polymer chains in the ES fibers to become more extended, impeding cold crystallization of the fibers, resulting in more confinement of PET chains and an increase in the RAF. The fraction of rigid amorphous chains greatly increased with a small amount of MWCNT loading: with addition of 2% MWCNTs, RAF increased to 0.64, compared to 0.23 in homopolymer PET ES fibers. Spatial constraints also inhibit the folding of polymer chains, resulting in a decrease in crystallinity of PET. For fully amorphous PET/MWCNT composites, MWCNTs do not affect the chain conformation of PET in the ES fibers. For cold crystallized PET/MWCNT composite nanofibers, more trans conformers were formed with the addition of MWCNTs. The increase of RAF (chain confinement) is associated with an increase of the concentration of the trans conformers in the amorphous region as the MWCNT concentration increases in the semicrystalline nanofibers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.