Abstract

We introduce a family of toric algebras defined by maximal chains of a finite distributive lattice. Applying results on stable set polytopes, we conclude that every such algebra is normal and Cohen–Macaulay, and give an interpretation of its Krull dimension in terms of the combinatorics of the underlying lattice. When the lattice is planar, we show that the corresponding chain algebra is generated by a sortable set of monomials and is isomorphic to a Hibi ring of another finite distributive lattice. As a consequence, it has a defining toric ideal with a quadratic Gröbner basis, and its h-vector counts ascents in certain standard Young tableaux. If instead the lattice has dimension n>2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$n>2$$\\end{document}, we show that the defining ideal has minimal generators of degree at least n.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.