Abstract

By co-culturing two endophytic fungi (Chaetomium virescens and Xylaria grammica) collected from the medicinal and edible plant Smilax glabra Roxb. and analyzing them with MolNetEnhancer module on GNPS platform, seven undescribed chromone-derived polyketides (chaetoxylariones A–G), including three pairs of enantiomer ones (2a/2b, 4a/4b and 6a/6b) and four optical pure ones (1, 3, 5 and 7), as well as five known structural analogues (8–12), were obtained. The structures of these new compounds were characterized by NMR spectroscopy, single-crystal X-ray diffraction, 13C NMR calculation and DP4+ probability analyses, as well as the comparison of the experimental electronic circular dichroism (ECD) data. Structurally, compound 1 featured an unprecedented chromone-derived sulfonamide tailored by two isoleucine-derived δ-hydroxy-3-methylpentenoic acids via the acylamide and NO bonds, respectively; compound 2 represented the first example of enantiomeric chromone derivative bearing a unique spiro-[3.3]alkane ring system; compound 3 featured a decane alkyl side chain that formed an undescribed five-membered lactone ring between C-7′ and C-10′; compound 4 contained an unexpected highly oxidized five-membered carbocyclic system featuring rare adjacent keto groups; compound 7 featured a rare methylsulfonyl moiety. In addition, compound 10 showed a significant inhibition towards SW620/AD300 cells with an IC50 value of PTX significantly decreased from 4.09 μM to 120 nM, and a further study uncovered that compound 10 could obviously reverse the MDR of SW620/AD300 cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call