Abstract
The design of antibody-conjugates (ACs) for delivering molecules for targeted applications in humans has sufficiently progressed to demonstrate clinical efficacy in certain malignancies and reduced systemic toxicity that occurs with standard nontargeted therapies. One area that can advance clinical success for ACs will be to increase their intracellular accumulation. However, entrapment and degradation in the endosomal-lysosomal pathway, on which ACs are reliant for the depositing of their molecular payload inside target cells, leads to reduced intracellular accumulation. Innovative approaches that can manipulate this pathway may provide a strategy for increasing accumulation. We hypothesized that escape from entrapment inside the endosomal-lysosomal pathway and redirected trafficking to the nucleus could be an effective approach to increase intracellular AC accumulation in target cells. Cholic acid (ChAc) was coupled to the peptide CGYGPKKKRKVGG containing the nuclear localization sequence (NLS) from SV-40 large T-antigen, which is termed ChAcNLS. ChAcNLS was conjugated to the mAb 7G3 (7G3-ChAcNLS), which has nanomolar affinity for the cell-surface leukemic antigen interleukin-3 receptor-α (IL-3Rα). Our aim was to determine whether 7G3-ChAcNLS increased intracellular accumulation while retaining nanomolar affinity and IL-3Rα-positive cell selectivity. Competition ELISA and cell treatment assays were performed. Cell fractionation, confocal microscopy, flow cytometry, and Western blot techniques were used to determine the level of antibody accumulation inside cells and in corresponding nuclei. In addition, the radioisotope copper-64 ((64)Cu) was also utilized as a surrogate molecular cargo to evaluate nuclear and intracellular accumulation by radioactivity counting. 7G3-ChAcNLS effectively escaped endosome entrapment and degradation resulting in a unique intracellular distribution pattern. mAb modification with ChAcNLS maintained 7G3 nM affinity and produced high selectivity for IL-3Rα-positive cells. In contrast, 7G3 ACs with the ability to either escape endosome entrapment or traffic to the nucleus was not superior to 7G3-ChAcNLS for increasing intracellular accumulation. Transportation of (64)Cu when complexed to 7G3-ChAcNLS also resulted in increased nuclear and intracellular radioactivity accumulation. Thus, ChAcNLS is a novel mAb functionalizing technology that demonstrates its ability to increase AC intracellular accumulation in target cells through escaping endosome entrapment coupled to nuclear trafficking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.