Abstract

For hydrogen-bonded neutral molecular clusters, response to an externally applied electric field can critically affect molecular cooperativity. In this light, response of dilute methanol-water admixtures to an external, perturbative electric field is studied at the simplest molecular level in the cluster configurations CH3OH⋯(H2O)n with "n" chosen to range from 1 to 4, employing the M06-2X hybrid functional in conjunction with the 6-311++G(2d,2p) basis set, well-suited for hydrogen bonding. Methanol is seen to favorably bond with the water molecules at its hydroxyl end up to certain characteristic maximum threshold field strengths beyond which the HOMO-LUMO energy-gap abruptly drops to zero culminating into a complete breakdown of the cluster. In the interim regime prior to breakdown, the electric field significantly alters the hydrogen bonding pattern primarily by elongating the cluster, resulting in a marked enhancement in its electric dipole moment leading to alterations in the molecular electrostatic potential. With the application of electric field, certain "exotic" O-H vibration bands appear that at the threshold field fall in the frequency range of 2510 cm(-1)-1880 cm(-1) in the IR spectra, in contrast with their normal (zero-field) counterparts that occur in the range of ∼3300-3900 cm(-1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.