Abstract
Herein we report an investigation of a CH3NH3PbI3 planar solar cell, showing significant power conversion efficiency (PCE) improvement from 4.88% to 6.13% by introducing a homogeneous and uniform NiO blocking interlayer fabricated with the reactive magnetron sputtering method. The sputtered NiO layer exhibits enhanced crystallization, high transmittance, and uniform surface morphology as well as a preferred in-plane orientation of the (200) plane. The PCE of the sputtered-NiO-based perovskite p-i-n planar solar cell can be further promoted to 9.83% when a homogeneous and dense perovskite layer is formed with solvent-engineering technology, showing an impressive open circuit voltage of 1.10 V. This is about 33% higher than that of devices using the conventional spray pyrolysis of NiO onto a transparent conducting glass. These results highlight the importance of a morphology- and crystallization-compatible interlayer toward a high-performance inverted perovskite planar solar cell.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.