Abstract

This paper reports measurements of both dissociative adsorption on and associative desorption from CH4 on Ru(0001). We consider the former a view of dissociation from the front side of the barrier, while the latter is considered as a view of dissociation from the back side of the barrier. A combination of both previous and new molecular beam measurements of dissociative adsorption shows that S0 depends on all experimental variables (E, Tn, Ts and isotope) in a manner similar to other close-packed transition metals. The interpretation of this behavior in terms of a theoretical description of the dissociation is discussed critically, with special emphasis on insights from new theoretical studies. The energy-resolved desorption flux Df(E,Ts) is obtained in associative desorption experiments using the technique of laser assisted associative desorption (LAAD). Measurements at several Ts allow both a direct determination of the adiabatic barrier V*(0) and considerable insight into the dynamics of dissociation. The V*(0) obtained from Df(E,Ts) is in excellent agreement with density functional theory (DFT) calculations and with the value indirectly inferred from molecular beam experiments. The chief dynamic conclusion from an analysis of Df(E,Ts) is that both bending and stretching coordinates must be produced in associative desorption, although they are not populated statistically. The absence of an isotope effect in the shape of Df(E,Ts) argues against the importance of tunneling in the desorption/adsorption. When reactive fluxes are compared via detailed balance, both the molecular beam experiment and the LAAD experiment are in good agreement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call