Abstract

The aim of the present study was to determine functional and molecular characteristics of receptors for calcitonin gene-related peptide (CGRP) and adrenomedullin in three different diameter groups of lenticulostriate arteries. Furthermore, the presence of perivascular neuronal sources of CGRP was evaluated in these arteries. In the functional studies, in vitro pharmacological experiments demonstrated that both CGRP and adrenomedullin induce α-CGRP-(8-37) sensitive vasodilation in artery segments of various diameters. The maximal amounts of vasodilation induced by CGRP and adrenomedullin were not different, whereas the potency of CGRP exceeded that of adrenomedullin by 2 orders of magnitude. Significant negative correlations between artery diameters and maximal responses were demonstrated for CGRP and adrenomedullin. In addition, the potency of both peptides tended to increase in decreasing artery diameter. In the molecular experiments, levels of mRNAs encoding CGRP receptors and receptor subunits were compared using reverse transcriptase polymerase chain reactions (RT-PCR). The larger the artery, the more mRNA encoding receptor activity-modifying proteins 1 and 2 (RAMP1 and RAMP2) was detected relative to the amount of mRNA encoding the calcitonin receptor-like receptor. By immunohistochemistry, perivascular CGRP containing nerve fibres were demonstrated in all the investigated artery sizes. In conclusion, both CGRP and adrenomedullin induced vasodilation via CGRP receptors in human lenticulostriate artery of various diameter. The artery responsiveness to the CGRP receptor agonists increased with smaller artery diameter, whereas the receptor-phenotype determining mRNA ratios tended to decrease. No evidence for CGRP and adrenomedullin receptor heterogeneity was present in lenticulostriate arteries of different diameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call