Abstract

The interaction between renin, nitric oxide (NO), and its second messenger cGMP is controversial. cAMP is the stimulatory second messenger for renin but is degraded by phosphodiesterases (PDEs). We previously reported that increasing endogenous cGMP in rats by inhibiting its breakdown by PDE-5 stimulated renin secretion rate (RSR). This could be reversed by selective inhibition of neuronal nitric oxide synthase (nNOS). PDE-3 metabolizes cAMP, but this can be inhibited by cGMP, suggesting that renal cGMP could stimulate RSR by diminishing PDE-3 degradation of cAMP. Rats were anesthetized with Inactin before determination of blood pressure (BP), renal blood flow (RBF), and sampling of renal venous and arterial blood to determine RSR. In 13 rats, basal BP was 104 +/- 2 mmHg, RBF was 6.1 ml x min(-1) x g kidney wt(-1) and RSR was 2.9 +/- 1.4 ng ANG I x h(-1) x min(-1). Inhibiting PDE-5 with 20 mg/kg body wt i.p. Zaprinast did not change hemodynamic parameters but increased RSR fivefold to 12.2 +/- 4.9 ng ANG I x h(-1) x min(-1) (P < 0.05). Renal venous cAMP was increased by Zaprinast from 93.8 +/- 27.9 to 149.2 +/- 36.0 pM x min(-1) x g kidney wt(-1) (P < 0.05). When another 10 rats were treated with the PDE-3 inhibitor Milrinone (0.4 microg/min over 30 min, which did not affect hemodynamics), RSR was elevated to 10.4 +/- 4.4 ng ANG I x h(-1) x min(-1). Milrinone also increased renal venous cAMP from 212 +/- 29 to 304 +/- 29 pM x min(-1) x g kidney wt(-1) (P < 0.025). Administration of Zaprinast to rats pretreated with Milrinone (n = 10) did not further increase in RSR (7.5 +/- 3.3 ng ANG I x h(-1) x min(-1)). These results are consistent with endogenous renal cGMP inhibiting PDE-3, which diminishes renal metabolism of cAMP. The resulting increase in cAMP serves as an endogenous stimulus for renin secretion. This suggests a pathway by which NO can indirectly stimulate RSR through its second messenger cGMP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.