Abstract

Increasing evidence suggests that endothelial cytotoxicity from reactive oxygen species (ROS) contributes to the pathogenesis of acute lung injury. Treatments designed to increase intracellular cGMP attenuate ROS-mediated apoptosis and necrosis in several cell types, but the mechanisms are not understood, and the effect of cGMP on pulmonary endothelial cell death remains controversial. In the current study, increasing intracellular cGMP by either 8pCPT-cGMP (50 microM) or atrial natriuretic peptide (10 nM) significantly attenuated cell death in H(2)O(2)-challenged mouse lung microvascular (MLMVEC) monolayers. 8pCPT-cGMP also decreased perfusate LDH release in isolated mouse lungs exposed to H(2)O(2) or ischemia-reperfusion. The protective effect of increasing cGMP in MLMVECs was accompanied by enhanced endothelial H(2)O(2) scavenging (measured by H(2)O(2) electrode) and decreased intracellular ROS concentration (measured by 2',7'-dichlorofluorescin fluorescence) as well as decreased phosphorylation of p38 MAPK and Akt. The cGMP-mediated cytoprotection and increased H(2)O(2) scavenging required >2 h of 8pCPT-cGMP incubation in wild-type MLMVEC and were absent in MLMVEC from protein kinase G (PKG(I))-/- mice suggesting a PKG(I)-mediated effect on gene regulation. Catalase and glutathione peroxidase 1 (Gpx-1) protein were increased by cGMP in wild-type but not PKG(I)-/- MLMVEC monolayers. Both the cGMP-mediated increases in antioxidant proteins and H(2)O(2) scavenging were prevented by inhibition of translation with cycloheximide. 8pCPT-cGMP had minimal effects on catalase and Gpx-1 mRNA. We conclude that cGMP, through PKG(I), attenuated H(2)O(2)-induced cytotoxicity in MLMVEC by increasing catalase and Gpx-1 expression through an unknown posttranscriptional effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.