Abstract

Analyzing images taken through scattering media is challenging, owing to speckle decorrelations from perturbations in the media. For in-line imaging modalities, which are appealing because they are compact, require no moving parts, and are robust, negating the effects of such scattering becomes particularly challenging. Here we explore the use of conditional generative adversarial networks (cGANs) to mitigate the effects of the additional scatterers in in-line geometries, including digital holographic microscopy. Using light scattering simulations and experiments on objects of interest with and without additional scatterers, we find that cGANs can be quickly trained with minuscule datasets and can also efficiently learn the one-to-one statistical mapping between the cross-domain input-output image pairs. Importantly, the output images are faithful enough to enable quantitative feature extraction. We also show that with rapid training using only 20 image pairs, it is possible to negate this undesired scattering to accurately localize diffraction-limited impulses with high spatial accuracy, therefore transforming a shift variant system to a linear shift invariant (LSI) system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call