Abstract

We introduce a Chaotic Genetic Algorithm (CGA) to schedule Grid jobs with uncertainties. We adopt a Fuzzy Set based Execution Time (FSET) model to describe uncertain operation time and flexible deadline of Grid jobs. We incorporate chaos into standard Genetic Algorithm (GA) by logistic function, a simple equation involving chaos. A distinguishing feature of our approach is that the convergence of CGA can be controlled automatically by the three famous characteristics of logistic function: convergent, bifurcating, and chaotic. Following this idea, we propose a chaotic mutation operatorbased on the feedback of fitness function that ameliorates GA, in terms of convergent speed and stability. We present an entropy based metrics to evaluate the performance of CGA. Experimental results illustrate the efficiency and stability of the resulting algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.