Abstract

This paper presents a unified geometric modeling and solution procedure for direct kinematic analysis of a class of parallel mechanisms based on conformal geometric algebra (CGA). After locking the actuated joints, such parallel mechanisms will be turned into a 3-RS structure, which is composed of two triangular platforms connected by three RS serial chains in parallel. Using the proposed approach, the univariate polynomial equation for the direct kinematic analysis of these parallel mechanisms can be derived in three steps. Firstly, the positions of two of the three spherical joints on the moving platform are formulated by the intersection, dissection and dual of the basic geometric entities under the frame of CGA. Secondly, a coordinate-invariant equation expressed in terms of geometric entities is derived via CGA operation. Thirdly, a univariate polynomial equation is obtained directly from the aforementioned coordinate-invariant equation by using tangent-half-angle substitution. Several case studies are then presented to verify the solution procedure. The novelties of this approach lie in that: (1) The formulation is concise and coordinate-invariant and has intrinsic geometric intuition due to the use of CGA; (2) No algebraic elimination procedure is required to derive the univariate polynomial equation; and (3) The proposed approach is applicable to the direct kinematics of this family of parallel mechanisms with any link parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.