Abstract

We introduce the Coarse-Grain Out-of-Order (CG-OoO) general-purpose processor designed to achieve close to In-Order (InO) processor energy while maintaining Out-of-Order (OoO) performance. CG-OoO is an energy-performance-proportional architecture. Block-level code processing is at the heart of this architecture; CG-OoO speculates, fetches, schedules, and commits code at block-level granularity. It eliminates unnecessary accesses to energy-consuming tables and turns large tables into smaller, distributed tables that are cheaper to access. CG-OoO leverages compiler-level code optimizations to deliver efficient static code and exploits dynamic block-level and instruction-level parallelism. CG-OoO introduces Skipahead, a complexity effective, limited out-of-order instruction scheduling model. Through the energy efficiency techniques applied to the compiler and processor pipeline stages, CG-OoO closes 62% of the average energy gap between the InO and OoO baseline processors at the same area and nearly the same performance as the OoO. This makes CG-OoO 1.8× more efficient than the OoO on the energy-delay product inverse metric. CG-OoO meets the OoO nominal performance while trading off the peak scheduling performance for superior energy efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call