Abstract

Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane regulator gene (CFTR). In light of the strong allelic heterogeneity and regional specificity of the mutation spectrum, the strategy of molecular diagnostics and counseling in CF requires genetic tests to reflect the frequency profile characteristic for a given population. The goal of the study was to provide an updated comprehensive estimation of the distribution of CFTR mutations in Polish CF patients and to assess the effectiveness of INNOLiPA_CFTR tests in Polish population. The analyzed cohort consisted of 738 patients with the clinically confirmed CF diagnosis, prescreened for molecular defects using INNOLiPA_CFTR panels from Innogenetics. A combined efficiency of INNOLiPA CFTR_19 and CFTR_17_TnUpdate tests was 75.5%; both mutations were detected in 68.2%, and one mutation in 14.8% of the affected individuals. The group composed of all the patients with only one or with no mutation detected (109 and 126 individuals, respectively) was analyzed further using a mutation screening approach, i.e. SSCP/HD (single strand conformational polymorphism/heteroduplex) analysis of PCR products followed by sequencing of the coding sequence. As a result, 53 more mutations were found in 97 patients. The overall efficiency of the CF allele detection was 82.5% (7.0% increase compared to INNOLiPA tests alone). The distribution of the most frequent mutations in Poland was assessed. Most of the mutations repetitively found in Polish patients had been previously described in other European populations. The most frequent mutated allele, F508del, represented 54.5% of Polish CF chromosomes. Another eight mutations had frequencies over 1%, 24 had frequencies between 1 and 0.1%; c.2052-2053insA and c.3468+2_3468+3insT were the most frequent non-INNOLiPA mutations. Mutation distribution described herein is also relevant to the Polish diaspora. Our study also demonstrates that the reported efficiency of mutation detection strongly depends on the diagnostic experience of referring health centers.

Highlights

  • Cystic fibrosis (CF; MIM 219700) is the most frequent autosomal recessive disease among Caucasians; its median incidence in Europe is 1 in 3,500 [1] and ranges from 1 in 1,350 to 1 in 25,000, depending on the population under study [2]

  • Two mutations were found in 68.2%, and of one mutation in 14.8% of the patients, and no mutation was identified in 17.1% of PL CF patients (Table 1)

  • Among fifty-six non- IL mutations revealed in 99 patients, forty-five were already reported in the Cystic Fibrosis Mutation Database (CFMDB), and eleven were novel, never described before (Table 2)

Read more

Summary

Introduction

Cystic fibrosis (CF; MIM 219700) is the most frequent autosomal recessive disease among Caucasians; its median incidence in Europe is 1 in 3,500 [1] and ranges from 1 in 1,350 to 1 in 25,000, depending on the population under study [2]. The most frequent CFTR mutation, F508del, accounts for ,66% CF chromosomes in the general Caucasian population [4,5]. In order to increase the rate of CFTR mutation detection and to correctly evaluate the residual risk of being a CF carrier after molecular analysis, it is essential that genetic tests are designed based on the frequency profile characteristic for a given population and that the sensitivity to detect mutations is as high as possible [4,5,6]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call