Abstract

Adaptation to hypoxia is an essential physiological response to decrease in tissue oxygenation. This process is primarily under the control of transcriptional activator hypoxia-inducible factor (HIF1). A better understanding of the intracellular HIF1 stabilization pathway would help in management of various diseases characterized by anemia. Among human pathologies, cystic fibrosis disease is characterized by a chronic anemia that is inadequately compensated by the classical erythroid response mediated by the HIF pathway. Because the kidney expresses CFTR and is a master organ involved in the adaptation to hypoxia, we used renal cells to explore the relationship between CFTR and the HIF1-mediated pathway. To monitor the adaptive response to hypoxia, we engineered a hypoxia-induced fluorescent reporter system to determine whether CFTR modulates hypoxia-induced HIF1 stabilization. We show that CFTR is a regulator of HIF stabilization by controlling the intracellular reactive oxygen species (ROS) level through its ability to transport glutathione (a ROS scavenger) out of the cell. Moreover, we demonstrated in a mouse model that both the pharmacological inhibition and the ΔF508 mutation of CFTR lead to an impairment of the adaptive erythroid response to oxygen deprivation. We conclude that CFTR controls HIF stabilization through control of the level of intracellular ROS that act as signaling agents in the HIF-1 pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call