Abstract

We have demonstrated the expression of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, mRNA, and protein within the rat and human brains, in areas regulating sexual differentiation and function. We have found that GT1-7, a gonadotropin-releasing hormone (GnRH)-secreting hypothalamic neuronal cell line, expresses the CFTR gene, mRNA, and protein and cAMP-dependent (36)Cl efflux. A linear 7-pS Cl- conductance, which is stimulated by ATP and cAMP analogs and inhibited by glibenclamide, consistent with CFTR activity, has been identified in GT1-7 cells. Antisense oligo(dN) generated against exon 10 of the CFTR gene transcript (mRNA) inhibit GnRH secretion into media [312 +/- 73, 850 +/- 150, 963 +/- 304, and 912 +/- 74 pg GnRH/4 x 10(6) cells for antisense, sense, missense, and no oligo(dN), respectively; P < 0. 029 for antisense oligo(dN)-treated vs. normal cells]. No changes in intracellular synthesis of GnRH were noted [1,400 +/- 371 and 1,395 +/- 384 pg GnRH/4 x 10(6) cells for antisense and sense oligo(dN), respectively]. Antisense oligo(dN), but not sense or missense oligo(dN), inhibited cAMP-dependent 36Cl efflux. The expression of CFTR protein, detected by Western blotting, was also inhibited 68% by preincubation of cells with antisense oligo(dN). GT1-7 hypothalamic neurons express the CFTR gene, mRNA, and protein, which modulate neurosecretion. Abnormal neuropeptide vesicle trafficking by mutant CFTR may help to explain some of the diverse manifestations of cystic fibrosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.