Abstract

We present a derivation of the entropy of black holes in induced gravity models based on conformal properties of induced gravity constituents near the horizon. The four-dimensional (4D) theory is first reduced to a tower of two-dimensional (2D) gravities such that each 2D theory is induced by fields with certain momentum $p$ along the horizon. We demonstrate that in the vicinity of the horizon constituents of the 2D induced gravities are described by conformal field theories (CFT) with specific central charges depending on spin and non-minimal couplings and with specific correlation lengths depending on the masses of fields and on the momentum $p$. This enables one to use CFT methods to count partial entropies $s(p)$ in each 2D sector. The sum of partial entropies correctly reproduces the Bekenstein-Hawking entropy of the 4D induced gravity theory. Our results indicate that earlier attempts of the derivation of the entropy of black holes based on a near-horizon CFT may have a microscopic realization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call