Abstract

Carbon Fiber-Reinforced by Plastic (CFRP) is now commonly used in the aircraft industry. The main challenge is to manufacture this difficult-to-cut work material, considering its quality criteria and economical aspects. Drilling is the main machining operation required for the assembly of the aircraft structure. In this paper, results are presented and discussed regarding exit delamination studied at a local scale. Because of the anisotropic properties of CFRP, the fiber cutting modes change with the composite sequence combined with the drill revolution parameters. The local feed forces generated by the cutting edge on the hole bottom may be correlated with delaminating aspects. A posttreatment method is proposed to analyze precisely these feed force and cutting torque distributions. Appropriate ply sequences are identified in order to limit the mechanical load concentration and the risk of delamination or uncut fibers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call