Abstract

A homopurine.homopyrimidine sequence of the c-fos promoter was chosen as a target for a triple helix oligonucleotide. Eight DNA oligonucleotides that ranged from 14 to 31 bp were shown to form a triple helix with three sequences within the c-fos promoter region. Reactive derivatives of homopyrimidine oligonucleotides bearing the 5'- or 3'-terminal DNA alkylation aromatic 2-chloroethylamino group were also synthesized. It was concluded, based on the physical properties of the DNA oligonucleotide complex, that the oligonucleotide forms a colinear triplex with the duplex binding sites. We investigated in detail, using electrophoretic mobility and footprinting protection, whether such oligonucleotide.DNA complexes are of benefit in designing high-affinity probes for a natural DNA sequence in the mouse c-fos gene. Our results demonstrate that four different DNA targets within the c-fos promoter region can form triplex structures with synthetic oligonucleotides in a sequence-specific manner. Moreover, in vitro modifications of the retinoblastoma-gene-product-binding site of the c-fos promoter at position -83 in front of the cAMP/cAMP-responsive element binding site and fos-binding site 3/activator-protein-2-like (FBS3/AP-2-like) site at position -431 by triple helix forming oligonucleotides cause dramatic suppression of fos-chloramphenicol acetyltransferase activity in endothelial cells. These results provide a basis for the development of a specific oligonucleotide target forming triplex-DNA complex, and emphasize the importance of a target forming triplex as a basis for control of gene expression and cell proliferation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call