Abstract

Conventional forgery localizing methods usually rely on different forgery footprints such as JPEG artifacts, edge inconsistency, camera noise, etc., with cross-entropy loss to locate manipulated regions. However, these methods have the disadvantage of over-fitting and focusing on only a few specific forgery footprints. On the other hand, real-life manipulated images are generated via a wide variety of forgery operations and thus, leave behind a wide variety of forgery footprints. Therefore, we need a more general approach for image forgery localization that can work well on a variety of forgery conditions. A key assumption in underlying forged region localization is that there remains a difference of feature distribution between untampered and manipulated regions in each forged image sample, irrespective of the forgery type. In this paper, we aim to leverage this difference of feature distribution to aid in image forgery localization. Specifically, we use contrastive loss to learn mapping into a feature space where the features between un-tampered and manipulated regions are well-separated for each image. Also, our method has the advantage of localizing manipulated region without requiring any prior knowledge or assumption about the forgery type. We demonstrate that our work outperforms several existing methods on three benchmark image manipulation datasets. Code is available at https://github.com/niloy193/CFLNet

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.