Abstract

Alleviating myocardial ischemia-reperfusion injury (MIRI) plays a critical role in the prognosis and improvement of cardiac function following acute myocardial infarction. Pyroptosis is a newly identified form of cell death that has been implicated in the regulation of MIRI. In our study, H9c2 cells and SD rats were transfected using a recombinant adenovirus vector carrying cFLIPL , and the transfection was conducted for 3 days. Subsequently, H9c2 cells were subjected to 4 h of hypoxia followed by 12 h of reoxygenation to simulate an in vitro ischemia-reperfusion model. SD rats underwent 30 min of ischemia followed by 2 h of reperfusion to establish an MIRI model. Our findings revealed a notable decrease in cFLIPL expression in response to ischemia/reperfusion (I/R) and hypoxia/reoxygenation (H/R) injuries. Overexpression of cFLIPL can inhibit pyroptosis, reducing myocardial infarction area in vivo, and enhancing H9c2 cell viability in vitro. I/R and H/R injuries induced the upregulation of ASC, cleaved Caspase 1, NLRP3, GSDMD-N, IL-1β, and IL-18 proteins, promoting cell apoptosis. Our research indicates that cFLIPL may suppress pyroptosis by strategically binding with Caspase 1, inhibiting the release of inflammatory cytokines and preventing cell membrane rupture. Therefore, cFLIPL could potentially serve as a promising target for alleviating MIRI by suppressing the pyroptotic pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call