Abstract

The cuticle is a hydrophobic lipid layer covering the epidermal cells of terrestrial plants. Although many genes involved in Arabidopsis cuticle development have been identified, the transcriptional regulation of these genes is largely unknown. Previously, we demonstrated that AtCFL1 negatively regulates cuticle development by interacting with the HD-ZIP IV transcription factor HDG1. Here, we report that two bHLH transcription factors, AtCFL1 associated protein 1 (CFLAP1) and CFLAP2, are also involved in AtCFL1-mediated regulation of cuticle development. CFLAP1 and CFLAP2 interact with AtCFL1 both in vitro and in vivo. Overexpression of either CFLAP1 or CFLAP2 led to expressional changes of genes involved in fatty acids, cutin and wax biosynthesis pathways and caused multiple cuticle defective phenotypes such as organ fusion, breakage of the cuticle layer and decreased epicuticular wax crystal loading. Functional inactivation of CFLAP1 and CFLAP2 by chimeric repression technology caused opposite phenotypes to the CFLAP1 overexpressor plants. Interestingly, we find that, similar to the transcription factor HDG1, the function of CFLAP1 in cuticle development is dependent on the presence of AtCFL1. Furthermore, both HDG1 and CFLAP1/2 interact with the same C-terminal C4 zinc finger domain of AtCFL1, a domain that is essential for AtCFL1 function. These results suggest that AtCFL1 may serve as a master regulator in the transcriptional regulation of cuticle development, and that CFLAP1 and CFLAP2 are involved in the AtCFL1-mediated regulation pathway, probably through competing with HDG1 to bind to AtCFL1.

Highlights

  • All primary aerial surfaces of land plants are covered by a continuous hydrophobic layer, the cuticle, which is synthesized in the epidermal cells [1,2,3,4]

  • We found two new basic helix-loop-helix (bHLH) transcription factors, AtCFL1 associated protein 1 (CFLAP1) and its homolog CFLAP2, which could interact with AtCFL1, a previously identified negative regulator of Arabidopsis cuticle formation

  • These results suggest that CFLAP1 and CFLAP2 regulate cuticle development by interacting with AtCFL1, and that AtCFL1 may work as a master regulator in the transcriptional regulation network

Read more

Summary

Introduction

All primary aerial surfaces of land plants are covered by a continuous hydrophobic layer, the cuticle, which is synthesized in the epidermal cells [1,2,3,4]. The cuticle is mainly composed of cutin and waxes [3]. Cutin consists of C16 and C18 fatty acids cross-linked by ester bonds to form a porous three-dimensional net [6]. Waxes are mainly composed of very-long-chain fatty acids (VLCFAs) and their derivatives, such as aldehydes, alcohols, alkanes, ketones, and esters, with predominant carbon chain length ranging from C24 to C34 [3]. Waxes are embedded in the cutin polyester net and deposited on the aerial surface. The precursors for the biosynthesis of cutin and waxes are derived from C16 and C18 fatty acids, which are produced in the plastids via the de novo fatty acids biosynthesis pathway

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call