Abstract

The interferon regulatory factor (IRF) family, a class of transcription factors with key functions, are important in host innate immune defense and stress response. However, further research is required to determine the functions of IRFs in invertebrates. In this study, the coding sequence of an IRF gene was obtained from the Zhikong scallop (Chlamys farreri) and named CfIRF8-like. The open reading frame of CfIRF8-like was 1371 bp long and encoded 456 amino acids. Protein domain prediction revealed a typical IRF domain in the N-terminus of the CfIRF8-like protein and a typical IRF3 domain in the C-terminus. Multiple sequence alignment confirmed the conservation of the amino acid sequences of these two functional protein domains. Phylogenetic analysis showed that CfIRF8-like clustered with mollusk IRF8 proteins and then clustered with vertebrate IRF3, IRF4, and IRF5 subfamily proteins. Quantitative real-time PCR detected CfIRF8-like mRNA in all tested scallop tissues, with the highest expression in the gills. Simultaneously, the expression of CfIRF8-like transcripts in gills was significantly induced by polyinosinic–polycytidylic acid challenge. The results of protein interaction experiments showed that CfIRF8-like could directly bind the TBK1/IKKε family protein of scallop (CfIKK2) via its N-terminal IRF domain, revealing the presence of an ancient functional TBK1/IKKε-IRF signaling axis in scallops. Finally, dual-luciferase reporter assay results showed that the overexpression of CfIRF8-like in human embryonic kidney 293T cells could specifically activate the interferon β promoter of mammals and the interferon-stimulated response element promoter in dose-dependent manners. The findings of this preliminary analysis of the signal transduction and immune functions of scallop CfIRF8-like protein lay a foundation for an in-depth understanding of the innate immune function of invertebrate IRFs and the development of comparative immunology. The experimental results also provide theoretical support for the breeding of scallop disease-resistant strains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call