Abstract

Runtime memory vulnerabilities, especially present in widely used languages as C and C++, are exploited by attackers to corrupt code pointers and hijack the execution flow of a program running on a target system to force it to behave abnormally. This is the principle of modern Code Reuse Attacks (CRAs) and of famous attack paradigms as Return-Oriented Programming (ROP) and Jump-Oriented Programming (JOP), which have defeated the previous defenses against malicious code injection such as Data Execution Prevention (DEP). Control-Flow Integrity (CFI) is a promising approach to protect against such runtime attacks. Recently, many CFI solutions have been proposed, with both hardware and software implementations. But how can a defense based on complying with a graph calculated a priori efficiently deal with something unpredictable as exceptions and interrupt requests? The present paper focuses on this dichotomy by analysing some of the CFI-based defenses and showing how the unexpected trigger of an interrupt and the sudden execution of an Interrupt Service Routine (ISR) can circumvent them.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call