Abstract
Colorectal cancer is a prevalent disease in modern times, with most cases being caused by polyps. Therefore, the segmentation of polyps has garnered significant attention in the field of medical image segmentation. In recent years, the variant network derived from the U-Net network has demonstrated a good segmentation effect on polyp segmentation challenges. In this paper, a polyp segmentation model, called CFHA-Net, is proposed, that combines a cross-scale feature fusion strategy and a hybrid attention mechanism. Inspired by feature learning, the encoder unit incorporates a cross-scale context fusion (CCF) module that performs cross-layer feature fusion and enhances the feature information of different scales. The skip connection is optimized by proposed triple hybrid attention (THA) module that aggregates spatial and channel attention features from three directions to improve the long-range dependence between features and help identify subsequent polyp lesion boundaries. Additionally, a dense-receptive feature fusion (DFF) module, which combines dense connections and multi-receptive field fusion modules, is added at the bottleneck layer to capture more comprehensive context information. Furthermore, a hybrid pooling (HP) module and a hybrid upsampling (HU) module are proposed to help the segmentation network acquire more contextual features. A series of experiments have been conducted on three typical datasets for polyp segmentation (CVC-ClinicDB, Kvasir-SEG, EndoTect) to evaluate the effectiveness and generalization of the proposed CFHA-Net. The experimental results demonstrate the validity and generalization of the proposed method, with many performance metrics surpassing those of related advanced segmentation networks. Therefore, proposed CFHA-Net could present a promising solution to the challenges of polyp segmentation in medical image analysis. The source code of proposed CFHA-Net is available at https://github.com/CXzhai/CFHA-Net.git.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.