Abstract

An efficient algorithm of numerical simulation of two-way coupled viscous flows of a dusty gas with collisions between particles is described. The flow of a carrier gas which is treated as a continuum is simulated by solving the modified Navier-Stokes equations using a CFD-method. The reverse effect of particles on a gas flow is modelled by the source terms entered into the momentum and energy equations. A dispersed phase is treated as a discrete set of particles which move in the carrier gas and can collide with each other. The particle drag force, the Magnus lift force, the damping torque and the heat exchange are taken into account in gas-particle interaction. Particles are assumed to collide inelastically and frictionally. A modified majorant frequency scheme of the Direct Simulation Monte Carlo (DSMC) method is proposed for computations of flow fields of a collisional “gas” of particles. The developed combined CFD / DSMC method is applied to the study of the supersonic gas-particle flow over a blunt body.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call