Abstract
ABSTRACTThe fluidization of quartz in the fluidized bed has great influence on the combustion and gasification of refuse-derived fuel (RDF). The combined computational fluid dynamics (CFD) and discrete element method (DEM) approach was used to explore the gas-solid hydrodynamics and mixing characteristics in a three-dimensional fluidized bed. All numerical analyses were performed referring to the experiments (Goldschmidt, Beetstra, and Kuipers 2004). The simulation results indicated that the quartz volume fraction agrees well with the experimental data. Furthermore, the cylinder-shaped RDF particles can mix well with the quartz particles as they were added from upside. For binary systems, it is necessary to investigate solid flow characteristics as well as pressure drops and examine the influence of superficial gas velocity on the solid mixing. Two main parameters are discussed: mixing degree and the time required to reach the steady state. It is also found that inlet gas velocity and particle properties (particle density ratio, shape and size) are significant factors on particle mixing in a fluidized bed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.