Abstract
Over the past few decades, granular media is gaining attention as a viable option for heat transfer fluids (HTFs). Several research efforts are studying the use of particle-based heat transfer fluids in a wide variety of applications. With this motivation, the current work focusses on analyzing the different heat transfer mechanisms in low-temperature mono-sized densely packed granular media. To study the heat transfer behavior of granular media at different scales, the current work employs a two-way coupled computational strategy. The motion of particles is solved using the Discrete Element Method (DEM) and the interstitial air is solved using a Finite-Volume (CFD) approach. The Open-Source library CFDEM Coupling® is used in the current study to join the Finite Volume PISO solver of OpenFOAM® and the DEM solver of LIGGGHTS®. Typically, particle-particle contact conduction and particle-air convection are the most popular closure models. But recent research identified a different heat transfer phenomenon in packed beds that cannot be identified by conduction or convection models. Though closure models were developed to implement this on a CFD-DEM framework, they did not capture the effect of intra-particulate thermal gradients on this phenomenon. Hence the current work also employs Particle-Resolved Direct Numerical Simulations (PR-DNS) to gain valuable insights allowing for the modification of existing models. A new closure model is then proposed here and is implemented in the CFD-DEM framework. This model provides key insights into the different heat transfer mechanism of packed beds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.