Abstract

Acoustic oscillation can be induced in a closed branch tube by a mean gas flow in a trunk tube passing the opening of the branch tube. Based on this principle, novel aerodynamically driven generator and thermoacoustic refrigerator can be manufactured. Large-eddy simulation (LES) of turbulence was applied to simulate aerodynamically driven acoustic oscillation in a mean flow engine (MFE) with a cross-junction configuration. It is shown that a standing-wave acoustic field is established inside the closed branch tube at certain mean flow velocities. Different acoustic and hydrodynamic modes occur with the increase of mean flow velocity. Furthermore, Strouhal number has strong effects on acoustic and hydrodynamic modes of the MFE. Under present computational conditions, critical acoustic pressure amplitudes in the first and fifth acoustic modes occur when St = 0.39 and St = 0.94 respectively. It would be beneficial to design MFEs operating in the third acoustic mode to obtain strong acoustic oscillation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.