Abstract
This work studied the issues of uniform flow distribution for general application in fuel cells, fuel processing chemical reactors, and other industrial devices. A novel method for uniform flow distribution was proposed, in which multiple levels of flow channel bifurcations were considered to uniformly distribute a flow into 2 n flow channels at the final stage, after n levels of bifurcation. To study the effect of the flow channel bifurcation structure and dimensions on the flow distribution uniformity, numerical analysis was conducted. Parameters such as the flow channel length and width at each level of bifurcation as well as the curvature of the turning area of flow channels were particularly investigated. Important results concerning the geometrical design of flow distributors for better flow distribution and uniformity are presented. The best structure of a flow distributor was selected based on the criterion of flow distribution uniformity and low pressure loss. Since the studied novel flow distributor distributes a flow into a number of parallel channels in a remarkable uniformity, the flow distribution structure is expected to be widely used in fuel cells, fuel cell systems, and variety of industrial reactors and heat exchangers to significantly improve the performance of these devices. The studied flow regime is limited to laminar flow. A CFD tool FLUENT @ was used for the simulation. The numerical treatment of convection terms in governing equations was based on the QUICK scheme, and the coupled computation solving for pressure and velocity fields was based on the SIMPLE algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.