Abstract

Lacking the understanding of multiphase flow in the fluidized bed methanol-to-olefin (MTO) process hinders the reactor design, operation, and optimization. Accordingly, a three-dimensional multiphase particle-in-cell model is established to study hydrodynamics and thermochemical characteristics during the MTO process in a fluidized bed reactor. After model validation, the influences of several critical operating parameters on reactor performance are discussed. The results show that particles in the medium part and freeboard of the reactor have heterogeneous velocity, temperature, and heat transfer coefficient (HTC) distributions. Thermal quantities of gas and solid phases are uniformly distributed in the medium part and freeboard of the reactor. The particle-averaged HTC under ranges from 60 to 120 W/(m2·K). Increasing wall temperature enlarges the particle HTC due to the enhanced exothermic reactions. Decreasing the particle diameter gives rise to a larger particle HTC. The vertical particle dispersion coefficient (Dz) is in the range of 0.01 m2/s to 0.03 m2/s. Methanol converts into olefin in a short period. Increasing methanol to catalyst ratio and wall temperature increases olefin including C2H4, C3H6, C4H8, and C5H10, and promotes the gas thermal properties. Particles with multi-sizes show a better MTO conversion performance than those with mono-sizes regarding the particle HTC and gas products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.