Abstract

An unsteady forced slip velocity has an important effect on the flow conditions adjacent to a membrane interface, which can help control concentration polarisation (CP) and fouling. This study explores the effect of non-sinusoidal slip velocity waveforms on mass transfer and shear stress in membrane channels. The hydrodynamics and mass transfer of unobstructed and obstructed membrane channels under the influence of slip velocity are simulated using two-dimensional computational fluid dynamics (CFD). At a Reynolds number where vortex shedding occurs, the results show that both sinusoidal and non-sinusoidal slip velocity profiles cause a similar increase in mass transfer and shear stress. However, for systems without vortex shedding, a non-sinusoidal waveform with a sudden decrease in slip velocity can significantly increase maximum shear stress (by over 20%). This effect shows a clear advantage of non-sinusoidal slip velocity profiles over sinusoidal slip velocity profiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.