Abstract

The modification of printed circuit heat exchangers through extended surface areas is a relatively underexplored topic, especially when considering their application in conjunction with precoolers in supercritical CO2 cycles. This study evaluates the response of a precooler by incorporating various configurations of integral and interrupted ribs, with the primary objective of identifying an optimized ribs combination under different operating conditions. The results demonstrate that ribs enhance secondary swirl flows, contributing to an increase in heat transfer levels in the supercritical CO2 flow. However, ribs do increase flow resistance, necessitating the careful selection of the optimal rib combination. The use of non-uniform patterns of interrupted ribs has been identified as the most feasible approach. By reducing the rib length and the distance between ribs at the upstream of supercritical CO2 and water flows, the performance of the precooler is notably enhanced. No matter the operating condition, cases with shorter rib lengths or smaller rib-to-rib distances at the beginning of both fluid paths consistently yield the best performance. Implementing these configurations in the precooler, the comprehensive performance index can reach approximately 1.2. This study contributes to enhancing efficiency and improving the compactness of large-scale solar power plants utilizing the supercritical CO2 cycle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.