Abstract

CFD-based computations of the flow field, power consumption and mixing time are presented for a mechanically stirred eight-blade paddle impeller in an unbaffled vessel over a range of Reynolds numbers covering laminar, transitional and turbulent flow regimes. The flow field calculations were performed using the sliding mesh technique to account for the motion of the impeller, and mixing time studies were done using a simulated tracer injection experiment. The effect of grid density and the choice of the turbulence model were investigated. The results are compared with flow field data from Dong et al . 1 , and power and mixing time correlations from the literature and show satisfactory agreement. It is shown that the product of mixing time and rotational speed remains constant for paddle impellers for laminar flow and that the use of a low Reynolds number turbulence model is necessary for good prediction of mixing time in the transitional flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.