Abstract

This paper presents computational fluid dynamics (CFD) studies to characterize air velocity distribution for various bed configurations in a swirling fluidized bed (SFB). Unlike conventional fluidized beds, a SFB provides radial mixing which is desirable is fluidization. Three velocities components were observed, the tangential velocity, radial velocity and axial velocity. These velocities were created as a result of using annular blade type distributor which mimics the turbine blades. In actual industrial applications, the axial velocity will create fluidization while the tangential velocity provides swirling effect. The presence of radial velocity can be explained as a consequence of centrifugal force generated by the swirling gas. Understanding these velocity distributions will enable optimization of the annular blade distributor design towards a high efficient fluidized bed system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call