Abstract

While HCCI engines have many advantages such as better efficiency and lower emissions, the control of these engines is still complex. In this context, cycle-to-cycle control using oxidizing species such as ozone (O3) presents a good potential. Only 1ppm of O3 has already a significant impact on the ignition. Predicting this effect as well as the low temperature combustion and ignition generally requires a detailed mechanism. Using CFD simulations with the Tabulation of Dynamic Adaptive Chemistry (TDAC) method and a mechanism including more than 1000 chemical species, we have predicted the effect of ozone seeding on the combustion of iso-octane in a HCCI engine. This paper presents the validation of the CFD simulations with a large range of ozone concentration and initial temperature. It shows that the TDAC method is able to reproduce accurately such complex chemical phenomena accounting for heat transfer and chemical reactions in a real geometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.