Abstract

This study presented the results of a computational study of cavitating flows of a marine propeller with energy saving equalizing ducts. The main purpose of the study was to estimate the cavitating flows around a propeller with a duct, and to investigate the interaction between a duct and a propeller in cavitating flows. The INSEAN E779A propeller was used as a baseline model. Validation studies were conducted for non-cavitating and cavitating flows around a hydrofoil and a propeller. A comparison with the experimental data showed good agreement in terms of sheet cavity patterns and propulsion performances of the propeller. Various duct configurations have been presented, and it was found that a duct in front of the propeller had effects on the propeller’s cavitation and propulsion performance. Higher angles of attack of the duct showed a significant effect on the propeller’s cavitation behavior, especially with a small duct. The small duct lowered the cavitation inception radius with increase in angle of attack of the duct, while the large duct had more effect on the tip cavitation. The propeller with large duct gave higher thrust, however, the higher torque loading affected the propeller efficiency. Overall, it was found that the propeller with small duct provided a higher propeller efficiency

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.