Abstract

Inhaling airborne droplets exhaled from an infected person is the principal mode of COVID-19 transmission. When residential energy efficiency workers conduct blower door tests in occupied residences with a COVID-19-infected occupant potentially present, there is a concern that it could put the workers at risk of infection with massive flows of air being generated by the tests. To minimize this risk, computational fluid dynamics (CFD) simulations were conducted for four prototype houses to develop guidelines for workers to follow during their service visits. The CFD simulations visualized the movements and evaluated the residence time of small particles released at certain locations under a series of scenarios representing situations that are likely to be encountered during in-home energy efficiency services. Guidelines were derived from the simulated tracks of droplets to help to increase the safety of the worker(s).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call