Abstract

In this paper, numerical simulations of non-linear sloshing in rectangular tanks are presented. Model implementations in the open source software REEF3D are tested and results compared with experimental data. Three different conditions are compared with experiments in 2D. First, the free surface time-evolution is compared for both linear and non-linear sloshing. In the last case, video images from the SPHERIC project are compared with simulations images of the free surface. A condition with lateral wave impacts in sloshing, with a frequency closer to the natural frequency of the first mode, can be found in this case. The non-linear sloshing, case 2, is also simulated in 3D. The numerical model is solving the RANS equations with the k-ω turbulence model. The level set method is used to capture the interface. Higher order discretization schemes are implemented to handle time-evolution and convective fluxes. A ghost cell method is used to account for solid boundaries and multiple grids for parallel computations. It is found that the limiting factor for the eddy-viscosity has significant influence in case 2 and 3. As the sloshing becomes more violent, the increased strain at the gas-liquid interface overproduces turbulence energy with unrealistically high damping of the motion. 3D simulations are only performed in case 2, which shows slightly better comparison than with 2D. Due to non-linearities and small damping, the time to reach steady-state may take several cycles, but no information is given in the paper [1]. The last case shows promising results for the global motion. As expected, the break up of the liquid surface makes it difficult to resolve each phase. But overall, the numerical model predicts the sloshing motion reasonably well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.