Abstract
Urban heat island phenomena and air pollution become serious problems in weak wind regions such as behind buildings and within street canyons, where buoyancy effect cannot be neglected. In order to apply CFD techniques for estimation of ventilation and thermal and pollutant dispersion in urban areas, it is important to assess the performance of turbulence models adopted to simulate these phenomena. As the first step of this study, we carried out wind tunnel experiments and CFD simulations of gas and thermal dispersion behind a high-rise building in an unstable non-isothermal turbulent flow. The standard k– ε model and a two-equation heat-transfer model as RANS models, and LES, were used for the CFD simulation. One of the important purposes of this study was to clarify the effect of inflow turbulence (both velocity and temperature) on flow field and gas/thermal dispersion for the LES calculation. Thus, LES calculations with/without inflow turbulence were conducted. The inflow turbulence was generated through a separate precursor simulation. The calculated results showed that both RANS models overestimated the size of the recirculation region behind the building and underestimated the lateral dispersion of the gas. Turbulent flow structures of LES with and without inflow turbulence were completely different. The LES result with inflow turbulence achieved better agreement with the experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Wind Engineering and Industrial Aerodynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.