Abstract

In this study, the CFD technique was employed to investigate the effect of the primary nozzle geometries on the performance of an ejector used in the steam jet refrigeration cycle. In all cases, only one fixed-geometry mixing chamber together with eight different primary nozzles was investigated numerically using the commercial CFD package, FLUENT 6.3. The effects on the primary fluid pressure, mass flow rate and Mach number were observed and analyzed. The Mach number contour lines were used to explain the mixing process occurring inside the ejector. It was found that shock's position of the mixed fluid and the expansion angle of the primary fluid jet stream within the mixing chamber played a very important role in the ejector performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.